
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1564
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

An Adaptive Web Service based Loosely
Coupled Distributed Computing architecture

for solving Data Intensive Applications
Hemalatha Thangaraj, G. Athisha

Abstract— This paper focuses on Web Service based loosely coupled Distributed Computing Environment for Single Program Multiple
Data and Multiple Program Multiple Data (SPMD, MPMD) type of applications in network. The Distributed Computing Environment (DCE) is
formed by utilizing the underutilized Local Area Network (LAN) workstations in a Campus Network. The DCE is used to solve large
problems. In this paper we propose a comprehensive approach to estimate the load of a workstation in order to decide whether the
workstation can be a part of DCE to solve computational intensive and data intensive applications. The proposed work is implemented and
two different applications are tested.

Index Terms— Compute node, Distributed Computing Environment (DCE), High Performance Computing (HPC) Applications, Simple
Object Access Protocol (SOAP), Web Service (WS).

—————————— ——————————

1 INTRODUCTION
enerally there are different kinds of applications ranging
from High Performance Computing to High throughput
computing. The High Performance computing applica-

tions require huge computational power and vast memory in
order to carry out the task of solving engineering applications
such as Finite element analysis, computational physics, Aero-
dynamic modeling and simulation, fluid dynamics, testing of
virtual prototypes, processing of satellite images etc. In such
environment computations are done in parallel over lots of
Compute Elements (CPU -Central Processing unit & GPU –
Graphics Processing Unit) and very fast network has to con-
nect between the compute elements. HPC applications need
networking of clusters and Grids [8]. The Complex or high
performance computing applications requires an environment
which has the capability to compute and move data across
networks quickly and efficiently. Such networks should pro-
vide high throughput and low latency to execute such applica-
tions. High throughput refers to an environment which can
deliver a large amount of processing capacity over a long pe-
riod of time. Low latency refers to the minimal delay between
processing input and providing output. When real time appli-
cations are executed in a desktop PC it takes longer time to get
the expected output since it provides less throughput and high
latency which is not suitable for execution. Hence we are in
need of HPC when one wants to complete a very time con-
suming operation in less time or to complete an operation un-
der a tight deadline or to perform high number of operations
per second. During the past few years, a range of computa-
tional models have been developed as the basis for the design
of fast and portable parallel algorithms [1]. To provide HPC
we are in need of suitable Hardware and Software infrastruc-
ture. But the hardware is very costly and the software is either
proprietary or open source. In case if software is open source it
requires complex set of make utilities which is to be carefully
executed one by one and configuring should be done parallel.
The future needs of HPC are increasing and recently HPC has
come to be applied to business uses of Cluster based super-

computers such as Data warehousing, Line of Business appli-
cations and Transaction processing. Since 93% of respondents
stated that HPC was fundamental to the growth of their busi-
ness, it is required to move away from expensive / specialized
proprietary parallel computers to form clusters of desktop
PC’s mostly which are underutilized[10]. However, the design
and implementation of efficient parallel algorithms for clusters
is still a problematic issue [1].

Flynn’s taxonomy is a classification of computer architec-
tures proposed by Michael I. Flynn in 1966. It is a specific clas-
sification of parallel computer architectures that are based on
the number of concurrent instruction and data streams availa-
ble in the architecture [9]. They are Single Instruction Single
Data SISD, Single Instruction Multiple Data SIMD, Multiple
Instruction Single Data MISD and Multiple Instruction and
Multiple Data MIMD [9]. MIMD is further classified into two
categories they are Single Program Multiple Data SPMD and
Multiple Program and Multiple Data MPMD, where in SPMD
multiple autonomous processors simultaneously execute the
same program of different data. The model was proposed by
Frederica et. al.. In MPMD multiple autonomous processors
simultaneously operating at least two independent programs
in which one node is called host and other node is called man-
ager. The manager runs a program which farms out data to all
other nodes which run a second program. The nodes return
results to the manager. In this paper we have used only the
underlying concepts of SPMD and MPMD.

2 RELATED WORK
2.1 Distributed System
There is a need for more computational power with an in-
crease of three orders of magnitude within five years and five
orders of magnitude within a decade [3]. This dramatic in-
crease in need for higher computational need can be achieved

G

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1565
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

by technology improvement and increased utilisation of idle
capacity. Grid is a distributed system with non interactive
workloads that involve a large number of resources for com-
putation. Grid provides a Distributed Computing environ-
ment that spans across multiple virtual organisations VO
where each VO consists of either physically distributed Insti-
tutions or logically related groups. The goal is to enable re-
source sharing and coordinated problem solving in dynamic,
multi Institutional virtual organisations. The approach taken
by the de facto standard implementation – The Globus Toolkit
is to build a uniform computing environment from diverse
resources by defining standard network protocols and provid-
ing middleware to mediate access to wide range of heteroge-
neous resources. Grid is a massive, loosely coupled, distribut-
ed computing environment with extensive computing capabil-
ity, communication bandwidth and data storage capacity. At
present large number of grid infrastructures are available
which are built with their own middleware. A middleware is a
software abstraction layer used to aggregate the resources to
form a grid. Different middleware are developed and they are
widely used by various research institutes to build their grids
based on their needs. A computational grid is a large scale
pooling of compute resources. It requires significant hardware
infrastructure to achieve the interconnection between several
resources and software infrastructure to monitor and control
the resulting ensemble. The environment provided by compu-
tational Grid is highly suitable for solving high performance
computing applications. The end-systems that are used for
setting up of HPC environments are classified into four clas-
ses. They are individual end systems like computers which are
relatively small and a high degree of homogeneity and inte-

grations. But they are lack in features which are necessary for
integrations into large clusters. The next class of systems is
Clusters. Clusters are like an individual end system which has
homogeneous architecture and it is controlled by a single ad-
ministrative entity that has control over each end system. But
this has the complicating factors like less integrated and in-
creased physical needs like alternative algorithms are needed
for certain resource management and control functions. This
leads to modification in software architectures and operating
systems. The third class of systems is Intranets. Intranet com-
prises of large numbers of resources which do not belong to
the single organisation. The complicating factors in intranet
are heterogeneity; different administrative domains have dif-
ferent administrative policies and lack of global knowledge.
The final class of systems is internet which adds additional
issues in addition to intranet. They are lack of centralised con-
trol, geographical distribution and international issues since it
has to cross international borders [3]. Current Grid middle-
ware toolkits expose their functionality through services, pro-
gramming model, command line tools, requiring much tech-
nical knowledge of grid backend and middleware systems [5]

2.2 Web Service Architecture (WSA) Standards
The next generation application is based on Autonomous Web
services [13]. Web services are not limited to the Internet.
They provide a powerful architecture for all types of Distrib-
uted Computing. It provides an open, interoperable and high-
ly efficient framework for implementing systems. The loosely
coupled architecture provides a new and promising solution
for implementing complex collaborative applications. The
WSA protocols is composed of Simple Object Access Protocol

Fig. 1. Web Service Architecture for Distributed Computing Environment.

 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1566
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

SOAP for messaging, Web Service Description Language
WSDL for describing the web services to the service consumer,
Universal Discovery Description Integration UDDI is a direc-
tory through which the client can find any services. eXtensible
Markup Language XML is a flexible and extensible data for-
mat standard for handling different universal data types in the
form of text [14]. XML significantly reduces the burden of de-
ploying many technologies needed to ensure success of web
services. SOAP provides a standard, extensible, composable
framework for packaging and exchanging XML messages
which uses its own text encoding style. Web Service defini-
tions can be mapped to any implementation language, plat-
form, object model or messaging system. WSDL defines the
abstract functionality of a service and concrete binding details
for SOAP, HTTP and MIME. In addition the WSA provides
following benefits a. promotes interoperability by minimizing
the requirement for shared understanding b. enables Just in
Time integration c. reduces complexity by encapsulation d.
Enables interoperability of legacy applications [12]. Since the
architecture is basically designed for highly dynamic program
to program interactions we have chosen WSA. Hence in this
paper we have designed a loosely coupled Web Service based
architecture which is composed of dynamic components. Our
objective is to provide an user friendly architecture to setup a
loosely coupled DCE and to reduce the burden of deploying
many technologies to form DCE for sharing of computational
resources.

3 PROPOSED SYSTEM
3.1 Model Design
The goal of the proposed model is to provide a framework for
executing Coarse grained SPMD and MPMD processes ena-
bling multi-platform operability without creating any specific
middleware tool. It is based on web service architecture. The
proposed framework establishes a loosely coupled distributed
computing environment by utilizing the underutilized desk-
top workstations in Local Area Network (LAN). Several such
nodes from different LAN in a Campus Area Network can be
used to setup a loosely coupled DCE without using complex
middleware. The framework consists of a DCE server and a
set of Compute nodes. DCE server acts like a Master machine
and compute nodes works like a client to serve the user. The
Fig. 1 shows the design of the web service architecture for
loosely coupled Distributed computing Environment. The
framework consists of a master machine and set of compute
nodes. The master machine consists of five modules. The re-
quest handler is the point at which the external user interacts

with the framework. The client submits a job which consists of
an executable code and an input to the executable code which
is in the form of either a data file or a text file or in any other
file formats which a user code can support. The request han-
dler assigns a unique user Identifier ID for the job submitted
by the client and it send back the ID to the client. A client can
use this ID for further interactions with the Master machine in
order to update the status of the submitted job. The role of the
master machine is to establish a virtual organization for every
remote client. The proposed system constitutes of loosely
coupled software components. Each component is implement-
ed as a web service. The following subsections covers in detail
about the role of each component which is deployed as a ser-
vice in the Web Service container.

3.2 Request Handler
It is the point at which the external user interacts with frame-
work in order to create Distributed Computing Environment
to execute the user job which is designed to satisfy the criteria
SPMD or MPMD processes. This criterion is validated at the
time of job submission in order to ensure whether the user
submits a valid job or not. In case if it is not satisfied the job is
rejected to avoid further conflicts. On submission the request
handler will assign a unique Job ID and return the ID in a syn-
chronous manner back to the user. Then the job is handed
over to Log Manager.

3.3 Log Manager
Log manager registers the details of the job in a separate log
file and stores the status of the job at every stage of its execu-
tion. It is a mechanism which is needed to track the status of
the Job by monitoring the execution of the resulting processes.
The status of the job is updated separately in a log file which is
indexed on a Unique Job Id. Every entry in this log file con-
sists of the following details viz. job ID, starting time, ending
time, process initialization and its successful termination
which is shown in Fig. 2.

2.4 Request Handler

4 CITATIONS

3.4 Node Manager
Using this module any new workstation which is connected

to a LAN can be added to the DCE or existing workstation can
be removed from the DCE on a demand basis. A software de-

————————————————
• Mrs. Hemalatha T. is currently working as an Associate Professor in De-

partment of Computer Science & Engineering in P.S.N.A College of Engi-
neering and Technology, Affiliated to Anna University, Dindigul, India,
 PH-09994980886. E-mail: hemashek@yahoo.com

• Dr. G. Athisha is currently working as a Professor in Department of Elec-
tronics and Communication engineering in P.S.N.A College of Engineer-
ing and Technology, Affiliated to Anna University, Dindigul,India, PH-
09442462056. E-mail: hodece@psnacet.edu.in

Fig. 2. A Sample Log file that shows the Details about the Job.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1567
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

ployment task is introduced to install software components on
a remote workstation using standard protocol while setting up
a DCE. This is done from the Master node in order to create a
DCE setup successfully. These files are totally obscure to the
end user.

3.5 Load Evaluator
A novel Adaptive algorithm is proposed in this paper that
estimates the load of remote LAN workstations that are con-
nected to the DCE framework. The Load evaluator algorithm
is implemented as a service in the target machine’s operating
system thereby it monitors the system resources periodically
in every machine which is a part of a Virtual Organization’s
DCE. The system resources include the CPU load and RAM
utilization. The CPU load estimation is computed by algo-
rithm shown in Listing 1. Initially the details about number of
processes running in the operating system are collected from
the task manager. The load is estimated by considering the
total number of processes, size of each process, memory uti-
lized for each process and total memory usage. Scaling is per-
formed in order to normalize these values and load is calculat-
ed using the algorithm shown below in Listing 1. Both scaling
and load estimation is done at the workstation in order to re-
duce the overhead incurred at the master machine, since it is a
time consuming operation at the Master machine to perform
the periodical estimation for all machines which are connected
to the DCE. The computed load is updated by the loadEval
service which is running in the workstation. The listener in
Master Node receives computed load and updates the com-
puted load in the XML data store file which is accessed by the
Job scheduler.
Algorithm:

1. Initialize the Load variable ‘L’ with value 0
2. Count the total number of processes under execution
 in the Workstation.
3. Based on the total number of processes adjust the ‘L’
 Value
4. Check the Percentage of RAM utilization for the

system and Application Processes.
5. Adjust the Value for the load variable ‘L’ based on the
 total RAM utilization.
6. Perform load Estimation by checking the value of ‘L’

Listing 1: Algorithm to compute the load of a workstation

in DCE
Program computeLoad (output)
// initialize the load variable with value 0
Set load variable L = 0;
//Count the number of processes running in the system
Begin
 If (no. of Processes < 35)
 Assign L = 1;
 Else
 Assign L = 2;
//Identify the number of Big processes / small processes/
//Mega processes based on RAM utilization for each
//process
 If (no. of big_Processes > 5)

 L = L + 3;
 End if
 If (no. of small_Processes > 10)
 L = L + 2;
 End if
 If (no. of mega_Processes > 2)
 L = L + 4;
 Endif
End;

//Check the percentage of total RAM used for entire
//System and application processes.

Program compute_RAM_Utilize (output)
Begin
 If (10 < total_RAM_utilisation < 30)
 L = L – 2;
 Elseif (31 < total_RAM_utilisation < 60)
 L = L – 1;
Else
 L = L + 2;

// Estimation of Load
 If (L < 4)
 Set status = “Lightly Loaded”
 Else
 If (4 < L < 8)
 Set status = “Medium Loaded”
 Else
 Set status = “Heavily Loaded”
Endif
 End.

3.6 Job Scheduler
This sub system plays a major role in this framework by select-
ing the best compute nodes for the execution of jobs and redis-
tribute the job that is code file and data file to the selected
compute nodes thereby it creates a new Virtual Organization.
The selection of compute nodes is performed on the basis of
the load computed by the loadEval service and the availability
of the compute node. The availability of the node is validated
from the policy of the individual workstation in a LAN or
group of workstations in the same LAN that posses the same
policy. Upon successful selection of compute nodes the input
data file is splitted based on the dimension of the data file, the
availability and load of compute nodes. The code file and data
file is then transferred to the target host with the support of
File Transfer protocol FTP.

3.7 Execution and Agglomeration
There is a listener at every node which will receive the job and
schedule it for execution. On successful completion, the results
are sent back to the master node. There is a listener running in
the master node that agglomerates all the results which is re-
ceived after execution and return the result back to the client
either synchronously or asynchronously.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1568
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4 EXPERIMENTATION
A practical experiment is setup in order to test the Web Ser-
vice based loosely coupled Distributed Computing Environ-
ment. Our objective is to develop a simple and easy to use
software solution for setting up of a Distributed computing
setup in order to execute a non interactive large data intensive
computational application that are designed in the form of
SPMD and MPMD. The implementation is tested in a LAN
and CAN that consists of client workstations with the configu-
ration of Pentium III or Pentium IV with a minimum of 512
MB RAM and above. Such workstations were automatically
configured to setup a DCE to solve higher computational ap-
plications. Two objectives are pursued in the implementations.
One is implemented to compute n X n matrix multiplication
operations in C language where n ranges from 500 to 2000.
Second objective is image processing based applications in
which different stages were executed in the form of MPMD
and otherwise same stage is executed in parallel for a se-
quence of different images.

4.1 Experimental Setup

Matrices play a key role in several domains like scientific and
business applications. Some application of matrices in the
physical science includes Electrical circuits, System of Linear
equations, structural mechanics, fluid mechanics, stress analy-
sis, multiple linear fitting and polynomial fitting[6], [7]. Be-
sides the matrices are significant to solve a certain kind of
problem like Markov Chain which is commonly used in cer-
tain kind of Businesses [6], [7]. In addition to this in the field of
cryptography sophisticated methods of coding and decoding
is done by using large matrix to encode a message and inverse
of the matrix are used to decode the message in order to in-
crease the strength of the encryption and decryption algo-
rithm. In such applications it is highly required to accelerate
the matrix operations so that we can get the faster response in
such applications. Hence volumetric square matrices were
selected with various sizes that vary from 500 to 2000 rows
and columns respectively. Then the following operations were
tested viz. Matrix multiplication, squaring & cubing of a ma-
trix in the framework. Since Matrix satisfies the requirement of
SPMD the code is handed over to all the cooperating set of
nodes in the framework which are selected based on the least
load to medium load. Then the input data file is split in to sub
data files according to the available nodes and their corre-
sponding load conditions. Then the sub data files are trans-
ferred to the listener running in each workstation in the
framework. Hence the listener at every node will receive the
job and schedule it for execution. On successful execution of
the job, the results are sent back to the master node. The mas-
ter node agglomerates all the results and returns the result
back to the client either synchronously or asynchronously.
Then similarly a volumetric set of satellite images were select-
ed and the different phases of image processing algorithms
were executed in parallel in this framework in order to extract
the feature or to use the processed images for pattern recogni-
tion. This is tested on a large set of images concurrently by
executing a set of codes written in C-Sharp. A set of images are

selected and executed in parallel in different machines in this
framework. Once on successful completion the response time
analysis was performed in order to analyze whether our objec-
tive is met or not.

4.2 Execution Results

The WS-DCE is developed by taking into consideration the
different aspects which may affect the performance by introducing
delay thereby resulting into the increase in response time. Hence
in order to assess how useful this model is, the real execution
times of the application described in section 4 were tested in the
usual approach. Then the same application is executed on the pro-
posed architecture presented in section 3.

Using these data it is possible to compare the response time.
The comparative analysis was performed and the result is shown
in Fig. 5. The response time is very less since the loadEval algo-
rithm presented in Listing 1 estimates the workstations in the most
adaptive and unique approach, thereby the best workstations are
selected and the job is dispatched based on its workstation capaci-
ty. In addition to this since the loadEval algorithm is running as a
Service along with other services in both Master Host and target
host’s operating system it does not introduce any additional over-
head which is shown in Fig. 3 & 4. Likewise the Listener at the
Master Node is implemented as a system service which runs along
with other system services. Then the request handler described in
section 3.2 was implemented as a Web service thereby any remote
user can submit the job just through the browser and the result can
be collected either synchronously or asynchronously.

6 CONCLUSION
 In this paper a new Web Service based Computational

Model for High Performance Computing - Single Program
Multiple Data and Multiple Program Multiple Data type of
applications has been proposed. The proposed work is vali-
dated by using a set of bench marks which is developed for
this purpose. This proposed system does not require any
higher configuration systems in order to execute high compu-
tational applications. Instead this architecture is developed in
order to utilize the underutilized LAN workstations.

Fig. 3. Listener running in the Compute Node – Target Host.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1569
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Such workstations are estimated using a novel load estima-

tion algorithm that measures the load of the client work-
stations by analyzing the processes running in the operating
system and their corresponding resource utilizations. Addi-
tionally new workstations can join this WS-DCE easily since
an automated procedure is implemented to add or remove a
LAN workstation.

Any application that satisfies the criteria of SPMD and
MPMD under the classification of Flynn’s taxonomy can be
applied to this System. This proposed model is tested by
means of executing the set of benchmarks and the response
time analysis is performed in order to validate the proposed
model. At all conditions the setup is tested and it provides
results at a faster rate with very less response time.
Future work in this area includes all the modules comprised in
the system model will be converted into web service so that
dynamic orchestration can be done on the fly in a regulated

and coordinated environment which would be more flexible.
The model can also be deployed in Cloud environment.

REFERENCES
[1] Jose Luis Bosque, Luis Pastor, “A Parallel Computational Model for Hetero-

geneous Clusters”, IEEE trans. on Parallel and Distributed System. Vol 17, No. 12,
1390 --1400 2006

[2] Abramson D., Sosic R., Giddy J. and Hall B.: “A tool for performing
parameterized simulations using Distributed Workstations”. In: Proc.
4th IEEE Symposium on High Performance Distributed Computing. IEEE
Computer Society Press, 1995

[3] Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, San Francisco (1998).

[4] Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Infor-
mation Services for Distributed Resource Sharing. In: 10th IEEE In-
ternational Symposium on High Performance Distributed Computing, pp.
181--184. IEEE Press, New York (2001)

[5] Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the
Grid: an Open Grid Services Architecture for Distributed Systems In-
tegration. Technical report, Global Grid Forum (2002)

[6] David N. Bannard : Applications of Matrices, NCSSM, TCM Confer-
ence (2004).

[7] Gillberto E. Urroz: Matrix Applications with SCILAB (2001).
[8] http://en.wikipedia.org/wiki/supercomputer.
[9] http://en.wikipedia.org/wiki/category:Flynn%27s_Taxonomy
[10] www.panasas.com
[11] http://www.oracle.mobi/quickpage.html?page=36945.
[12] www.ibm.com/developerworks/webservices/library/w-ovr/#ibm-pcon.
[13] http://msdn.microsoft.com/en-us/library/ms996441.aspx
[14] www.w3.org/TR/w8-arch/#wsdl12

Fig. 4. Listener running in the Master Host of the Model.

Fig. 5. Performance Evaluation – Response Time (in Seconds)
analysis of Matrix Multiplication in WS-DCE Architecture com-
prises of 3 Compute nodes with that of the Single system.

IJSER

http://www.ijser.org/
http://www.panasas.com/
http://www.ibm.com/developerworks/webservices/library/w-ovr/#ibm-pcon

	1 Introduction
	2 Related Work
	2.1 Distributed System
	2.2 Web Service Architecture (WSA) Standards

	3 Proposed System
	3.1 Model Design
	3.2 Request Handler
	3.3 Log Manager
	2.4 Request Handler

	4 Citations
	3.4 Node Manager
	3.5 Load Evaluator
	3.6 Job Scheduler
	3.7 Execution and Agglomeration

	4 Experimentation
	4.1 Experimental Setup
	4.2 Execution Results

	6 Conclusion
	References

